网页即时交流
QQ咨询
咨询热线
020-28998648
  • s0
  • s3
6个案例弄懂737NG后缘襟翼旁通故障
6344
0

一、系统原理


后缘襟翼旁通的四种情况:

1、不对称保护(ASYMMETRY DETECTION):

左右后缘襟翼位置传感器的解析值>9°时,0.5秒后触发不对称保护,旁通活门作动,时间超过3秒,旁通活门锁定在旁通位。此时,襟翼位置指示器指示的是传感器实际的数值。只有当角度值恢复到7.5°内,飞机在地面且空速<60节, 5秒后,才会复位。



2、后缘襟翼倾斜(SKEW DETECTION):

每个后缘驱动组件上都装有一个襟翼倾斜传感器,共8个,分别对称对比传感器的角度解析值。当任意一组传感器之间的差值超限,就会触发倾斜保护,旁通活门打开。时间超过2秒,旁通活门锁定在旁通位。当发生倾斜保护后,FSEU会对比倾斜传感器和位置传感器的数值,判断是哪一侧襟翼发生了倾斜。这时,指示器上的指针的不是真实的传感器数据。而是直接比没有扭转的传感器大或小15°,形成一个大的剪刀差。



3、非指令运动(UCM DETECTION):

FSEU基于手柄的位置,给出一个收上限制和放出限制值,通过对比它与1#、8#倾斜传感器的信号,来判断是否发生非指令运动。当空速>60节,非指令运动超过0.7秒,触发非指令运动保护,旁通活门打开。时间超过2秒,旁通活门锁定在旁通位。当空速<60节,则触发起飞构型警告。一旦发生非指令运动保护,只有在地面重新给FSEU上电,才能复位。



4、襟翼卸载(FLAP LOADRELIEF):

当襟翼在较大的空速下放出时,气动力将会对襟翼和支撑结构造成损伤。为了防止气动载荷过大,FSEU会根据ADIRU的空速信号和襟翼手柄的位置,控制后缘襟翼控制活门内的卸载电磁线圈通电,收回后缘襟翼。



非SFP构型,只有30和40单位卸载




二、故障探测逻辑



当发生不对称保护并且旁通活门锁定在旁通位后,FESU首先会先检查28VAC的励磁电压是否正常。如果无励磁电压,将会触发27-53279 (L 28VAC EXC INV)或27-53280 (R 28VAC EXC INV)警告信息。若励磁电压正常,FSEU将1#、8#倾斜传感器分别与左右后缘襟翼位置传感器的数值进行对比:

若1#和左侧的数值不一致,记录故障信息:27-52259 TE FLAP SNSR L;

若8#和右侧的数值不一致,记录故障信息:27-52260 TE FLAP SNSR R;

否则,将记录故障信息:27-52261 TE FLAP SNSR DIS(无法判断左右)



如上图所示,襟翼位置传感器内部有三组同步器,分别将信号给失速管理、自动驾驶和位置指示。每组同步器可简化为下图(指示器内有两组同步器,后同步器驱动左指针,前同步器驱动右指针):



转子线圈通过阻力很小的滑环与28VAC相连接,当襟翼收放时,传感器内部的定子线圈随扭力管的转动而转动,产生交变的电磁场。旋转的交变电磁场使得传感器和指示器的定子线圈产生大小、相位都相同的感应电流。而指示器端的定子和转子线圈因相位差而产生电磁转矩,从而使得指示器的指针随传感器的转动而变化。传感器的量程为:0-270°,它实际上是感受扭力管转了多少圈,手柄位置和传感器角度解析值对应情况如下:



注:上表中角度解析值为单个数值的,是飞机上读出的实际值;有区间范围的,是AMM手册中的理论值。在某些译码软件中,为了更加直观分析,SKEW传感器的数值已经经过处理:1-8,2-7,3-6,4-5的数值是一样的。


 

通过上述原理分析,我们可知:FSEU是在传感器和指示器中间取交流电压信号,通过其内部的解调器模块,将传感器和指示器定子的X线圈和Y线圈的电压信号解析成角度信号,并计算用于触发不对称保护逻辑。不难看出,无论是传感器端还是指示器端的同步器电气线路或部件发生异常,都会影响FSEU的电压信号采集,从而触发襟翼旁通。


波音调查发现,在拆下的指示器中发现电刷和滑环接口处有电弧迹象,并在滑环附近发现了大量因电弧产生的积碳碎末。电弧对电刷产生的腐蚀一方面增大了它与滑环之间的摩擦力,另一方面使得电刷与滑环之间的物理接触减少,从而导致开路。这必然会影响到FSEU电压信号的采集,降低襟翼不对称的裕度。我们看到的现象就是:在收放的过程中,一侧襟翼位置指示滞后于另外一侧。时间长了,随不对称裕度的不断降低,便会导致襟翼旁通。



此外,调查还发现传感器到FSEU之间的线路和插头(D40024,D275,D40034和D229)因安装环境恶劣,容易受潮和除冰液的污染而导致线路中的阻值增大(阻值增大80Ω就会触发不对称保护),也会导致后缘襟翼旁通。




三、一般排故思路(仅供参考)


对于常见的故障信息:27-52259和27-52260,可参考FIM27-51 TASK 813/820排故:

1、译码检查对比手柄位置和传感器角度值变化,对故障做出初步的判读;

2、询问机组是否使用备用方式放襟翼着陆?将手柄放到和襟翼实际位置一致,复位备用襟翼电门后再打压操作襟翼(避免意外作动);

3、目视检查襟翼收放的过程中是否存在真实机械卡阻,观察指示器指针移动是否正常。若发生真实卡阻,检查襟翼滑轨、连杆、蜗杆、扭力管、传动组件有无异常,扭力刹车指示器有无弹出,参考AMM27-51-58-200-801完成后缘襟翼扭力管检查;

4、脱开指示器插头,确认襟翼收放是否正常;

5、参考AMM20-10-76测量传感器和指示器内部同步器的转子线圈和定子线圈阻值,并完成指示器到FSEU和传感器到FSEU之间线路的检查,并清洁线路中的所有插头;

6、若检查正常,同时更换指示器和传感器(更换传感器时,注意清洁1#或8#襟翼驱动组件花键腔多余的BMS3-33油脂);

7、若机组使用无襟翼着陆,轮胎可能超速,需译码核实,视情更换所有超速的轮胎。若涉及复飞,还需关注是否有襟翼、起落架超速,以及EGT超限等情况。




四、一些案例


案例1(指示故障导致旁通):

实时监控XMN-SHE航段触发TE FLAP ASYMMERY 5 DEGREES,自检FSEU历史有 27-52260 TE FLAP SNSR R信息。依据FIM27-51TASK 820检查襟翼手柄在40度时,左右襟翼位置指示器不一致。量线正常,更换右大翼后缘襟翼位置传感器和指示器,测试正常。

译码发现进近阶段,机组将襟翼手柄从5个单位,放到15个单位时,译码发现右侧襟翼指示滞后于左侧,并最终卡在11个单位,触发襟翼旁通。



建议用AIRFASE译码可以查看襟翼位置传感器角度的解析值的原始数据AGS和FDS都已经将原始数据处理,能更直观的看到角度变化趋势。



案例2(机组误操作导致旁通):

机组在进近过程中放襟翼25时,误将手柄放到30单位,超出了空速限制,触发襟翼卸载保护。通常情况下,当发生襟翼卸载,一个或多个后缘襟翼传动组件上的torque brake指示器会弹出(一旦弹出,空中无法复位,即使等空速下降后收回手柄,襟翼也不会收回)。但也存在torque brake指示器不弹出的情况,见下图译码数据:




案例3(真实机械卡滞):

外航(737NG-FTE-27-X4416)曾出现过多起扭力管与后缘襟翼传动组件的耦合器花键磨损,导致扭力管无法驱动后缘襟翼传动组件。




案例4(跳开关跳出导致襟翼旁通):

外航案例(ISE-27-18-24787):空中机组放襟翼1度时,左侧正常放出,但右侧指针显示仍在UP位,使用备用方式放,前缘装置放出正常。地面检查C1443跳开关跳出无法复位,自检FSEU代码27-53280 R 28VAC EXC INV,最终排故确认为右侧襟翼位置传感器短路。




案例5(SKEW导致的襟翼旁通):

SKEW传感器导致的襟翼旁通在机队历史上很少见,下面这个案例是外航分享的。从译码数据上看,SKEW传感器2#-7#的数值并无异常,但是FESU还是探测到了2#和7#传感器的数值差值超限,这主要是因为DFDR的采集频率是8秒/帧,突变的数据没采集到。这种数值突变又自动恢复正常,大概率上是线路出现了磨损,具体见案例6。




案例6(线路磨损导致SKEW数据异常):

起飞后机组报襟翼不对称,自检有27-53257 FLAP 8 SKEW信息。译码起飞17秒后,襟翼手柄5个单位,8号SKEW传感器角度值突变至112.49°,出现SKEW和襟翼旁通信号,165秒后SKEW信号恢复正常.量取8号SKEW传感器阻值满足手册要求。量线检查发现W6028-3006Y-22和W6028-3006B-22两两绝缘性低,在5.1K~24M欧之间跳动。





五、小结:



尽管目前我们采取了一些工程手段,通过监控左右后缘襟翼位置传感器差值的变化趋势,来提前预判襟翼旁通故障。但受冬季寒冷天气影响,无论是润滑脂性能下降,还是防冻液对线路和部件插头的污染,对于此类季节性的角度突变的故障,我们的监控系统依然无法做到有效的捕捉。因此,在掌握系统原理的情况下,更有助于我们快速锁定故障源。

严格意义上讲,后缘襟翼卸载并不属于旁通,虽然从表现形式上都是后缘襟翼动不了了。


我们知道,襟翼卸载的目的是:当襟翼在较大的空速下放出时,后缘襟翼传动组件上的torque brake作动,阻止后缘襟翼继续伸出,防止气动载荷过大对襟翼和支撑结构造成损伤。卸载后将导致一个或多个后缘襟翼传动组件的torque brake指示器弹出,表明襟翼曾经发生过载。而这种制动,在空中其实是可以自行复位的,只是指示器才需要在地面复位。之前对手册的理解不是很深入,为此也专门发SR问了波音,现在把它贴出来,希望能对大家理解该系统的工作原理有帮助:



  Service Request ID:  4-4948490989

REFERENCES: 

/A/ Attachment snapshot 

/B/ Attachment QAR DATA 

/C/ HNA-HNA-20-1651-01C 


DESCRIPTION: 


We recently experienced a TE Flap lock-out event with no faults found in the FSEU. Review DFDR data of this event and found when airspeed above 163kts, flap handle momentary move to position Flaps 40, flap load relief occur.See attachment for detail.



DESIRED ACTION: 

====================== 

HNA would request explanations about below question:  


Q1.According to B737 FCOM, the flap load relief occurred when the actual flap position related flap placard limit speed was exceeded, not the flap lever position. But in this case,the flap position was at 40,  actual flap position still at 15. How come flap load relief occur? 


Q2.When the load relief conditions are no longer present and the load relief command has been reset, why the flaps did not return to the lever commanded position immediately?  


Q3.When this does not happen(the flaps continue to move away from the lever commanded position), why the FSEU did not declare UCM?




RESPONSE: 


Boeing has reviewed the attached flight data and provides the following observations and responses to your questions. 



At 1:48:11, the flap lever is moved from 15 to 40 and immediately triggers flap load relief since the airspeed (165 knots) is above the trigger speed (163 knots) for flaps 40.  This immediately trips flap load relief since the FSEU is a -1.  The FSEU -2 uses actual flap position, whereas the -1 uses flap detent position for activating flap load relief. 



At 1:48:12, the flap lever is moved from 40 to 30 and immediately resets the flap load relief command since the airspeed (163knots) is below the trigger speed (176 knots) for flaps 30.  The flaps should have continued to extend to flaps 30, however, the deactivation of flap load relief likely resulted in "fast startup" conditions described in 737FTD-NG-27-03002 which resulted in a flap transmission torque brake trip.  Once tripped, the torque brake prevented further movement of the flaps in the EXTEND direction. 



At 1:49:02, the flap lever is moved from 30 to 15 and immediately the flaps retract normally to the flap 15 position.  This action of moving the flap lever to 15 released the tripped torque brake from being locked out in the EXTEND direction and allowed the flaps to retract to the 15 position.  For the duration of the flight, the flaps behaved as expected. 



Since this event was completely mechanical, no FSEU fault code was generated by the FSEU.  Furthermore, Trailing Edge Flap Uncommanded Motion did not occur because flap position did not ever move in the opposite direction from the flap lever nor did the flaps ever move when they were not commanded to move.  If UCM had occurred during this event, a fault code would have been captured in the FSEU. 



Boeing recommends HNA inspect the datum airplane for evidence of a tripped torque brake for confirmation of root cause.  We further recommend HNA ensure that all the torque brakes are reset so that future similar events can be assessed for root cause.  Often torque brakes are tripped during routine maintenance making it difficult to conclude whether the tripped torque brake occurred during operation or during prior maintenance.   



Boeing would further recommend that HNA consider upgrading the FSEU to a -2.  If a -2 FSEU was installed on this airplane, flap load relief would not have occurred. 



Please contact Boeing if you have further questions.




RESPONSE: Thanks for your reply,and I still have some questions: Q1. If we need to released the tripped torque brake from being locked out in the EXTEND direction, we must place the flap handle in a position below where the lockout occurred( For example : If airspeed is above 176kts and flap handle position at 25, momentary initiation flap load relief system by moving lever to 30. After airspeed is below 176kts, we need to moving the flap lever to 15 to released the tripped torque brake ). Am I right? Q2.  Can you explain in detail how it works? Such as how torque brake stops the movement of the torque tubes, and how does it reset after activates.




DESCRIPTION: REFERENCES: /A/  Attachment snapshot /B/  Attachment QAR DATA /C/  HNA-HNA-20-1651-01C


RESPONSE: In response to Q1, Hainan is correct.  If the torque limiter/brake is activated in the extend direction, the torque limiter/brake can only be reset by reversing the load against the brake using flap retraction.  Similarly, if the torque brake was activated int he retract direction, the torque limiter/brake can only be reset by reversing the load against the brake using flap extension.  In the ref /C/ reported event, there was a momentary activation/deactivation of load relief which, based on the review of the flight data, caused the one (or more) of the torque limiters to activate in the extend direction.  Since the flap lever was higher than the current flap position, the trailing edge flap control valve was still commanding the flaps to extend resulting in the continued brake activation in the extend direction.  Once the flap lever was reversed to 15, the trailing edge flap control valve commanded the flaps to retract which released the torque brake and allowed the flap drive system to function properly.   In response to Q2, all eight flap transmissions contain a torque limiter/brake assembly.  The torque limiter/brake assembly includes an input and output cam, an output shaft, and three balls which actuate a spring-loaded (Belleville spring type) torque limiter mechanism.  The torque limiter's purpose is to protect the downstream flap components and structure from seeing the flap hydraulic motor's full stall torque, should any of these downstream components become restricted or jammed. When high loads are present, or as in the ref /C/ event there is a quick and sudden reversal in the direction of the flaps, the ball/ramp mechanism works against a Belleville washer spring to force a series of rotating brake plates into the stationary brake plates, thereby locking out the system. The torque limiter/brake operates in the both flap retract and flap extend directions. Please refer to CMM 27-55-82 for additional details.








5
打赏
收藏
点击回复
      全部留言
  • 0
更多回复
机务维修交流
      圈内贴子150
  • 通航圈成员33

扫一扫访问手机版